Portfolio & Risk Analytics Research

Portfolio Risk Attribution

Decomposing Risk using x-sigma-rho

Jose Menchero
Head of Portfolio Analytics Research

jmenchero@bloomberg.net

Outline

- Understanding the drivers of portfolio volatility
 - Exposures, volatilities, correlation (x-sigma-rho)
- Example of x-sigma-rho attribution:
 - Factor and specific risk decomposition
- Further applications
 - Brinson model
 - Custom factor attribution
 - Reverse optimization
 - Cash financing versus benchmark financing
 - Flexible partitions
 - Alpha/beta attribution
- Summary

Portfolio & Risk Analytics Research

The x-sigma-rho Framework

General Performance Attribution

- Performance attribution is the starting point for risk attribution
 - The x-sigma-rho methodology allows one to always attribute portfolio risk to the same decision variables used to attribute portfolio returns
- Portfolio returns can always be written as the sum-product of: (a) source exposures, and (b) source returns
- Source returns typically represent well-defined portfolios

$$R = \sum_{m} x_{m} g_{m}$$
 General performance attribution

- Source exposures (x_m) :
 - Known with certainty at the start of the investment period
 - Controlled by the portfolio manager
- Source returns (g_m) :
 - Unknown at the start of the investment period (i.e., random variables)
 - Must be forecast by the portfolio manager

Sloomberg

Examples: Performance Attribution

Asset-level performance attribution:

$$R^{A} = \sum_{n} w_{n}^{A} r_{n} \qquad \underline{\text{or}} \qquad R^{A} = \sum_{n} w_{n}^{A} \left(r_{n} - R^{B} \right)$$

Sector-based performance attribution (Brinson model)

$$R^{A} = \sum_{i} (w_{i}^{P} - w_{i}^{B}) (r_{i}^{B} - R^{B}) + \sum_{i} w_{i}^{P} (r_{i}^{P} - r_{i}^{B})$$

Factor-based performance attribution

$$R^A = \sum_k X_k^A f_k + \sum_n w_n^A u_n$$

- For equities, factors represent returns on pure factor portfolios
- In fixed income, factors may be changes in interest rates

General Risk Attribution (x-sigma-rho)

 Portfolio risk should be attributed to the same decision variables used to attribute performance

$$\sigma_R^2 = \text{cov}(R, R) = \sum_m x_m \text{cov}(g_m, R)$$
 Portfolio variance

Portfolio volatility is attributed to

$$\longrightarrow \sigma_R = \sum_m x_m \sigma_m \rho_m \qquad x-sigma-rho \text{ formula}$$

- Volatilities and correlations are computed using the same risk model used to compute portfolio risk
- Intuitively identifies the three drivers of portfolio risk:
 - Portfolio exposures to the sources x_m
 - Volatility of the return sources σ_m
 - Correlation of the source portfolio with the overall portfolio ho_m

Relation to Stand-Alone Volatilities

Risk is sometimes reported using the stand-alone volatilities of the return contributions:

$$\theta_m = |x_m| \sigma_m$$
 Stand-alone volatility

- Problems with stand-alone volatility:
 - Ignores the role of correlations
 - Cannot account for negative risk contributions to risk
 - Does not add up to portfolio risk
- Problems are easily remedied by introducing correlations:

$$\sigma_R = \sum_m \theta_m \rho_m \operatorname{sign}(x_m)$$

By including correlations, risk is now fully explained

Marginal Contributions and x-sigma-rho

Risk can be attributed using marginal contributions:

$$\sigma_R = \sum_m x_m \text{MCAR}_m$$

MCAR is typically defined as a partial derivative

$$MCAR_{m} = \frac{\partial \sigma_{R}}{\partial x_{m}}$$

$$MCAR measures the change in portfolio risk if the exposure is increased by a small amount$$

- Problems with MCAR:
 - Partial-derivative concept is not intuitive to many investors
 - Must decide whether the incremental exposures are financed by borrowing cash or selling the benchmark
 - Does not differentiate based on either volatility or correlation
- Problems are remedied using x-sigma-rho:

$$MCAR_m = \sigma_m \rho_m$$

Example (Summary View)

Portfolio: Russell 2000 Growth (98%) with 2% cash

Benchmark: Russell 3000

Risk Model: Bloomberg MAC2 US Equity Model

Analysis Date: October 19, 2016

Tracking Error: 6.94% (β=1.20)

Source	Source Volatility	Source Correlation	Risk Contribution
Factor	6.79	0.98	6.65
Specific	1.42	0.20	0.29
Total Portfolio	6.94	1.00	6.94

Use two buckets for summary view

- Implied exposure to a bucket is 1
- Risk contributions are additive
- Portfolio risk is dominated by factors
- Drilldown provides additional insight into sources of risk

Sloomberg

Factor and Specific Drilldown

Attribute active return to factor and specific contributions:

Summary

Source	Source Volatility	Source Correlation	Risk Contribution
Factor	6.79	0.98	6.65
Specific	1.42	0.20	0.29
Total Portfolio	6.94	1.00	6.94

Attribution Equation

$$R_A = \sum_k X_k^A f_k + \sum_n w_n^A u_n$$

Factor Drilldown

	Factor	Factor	Factor Factor	
Factor	Exposure	Volatility	Correlation	Contrib
Size	-2.55	1.91	-0.74	3.60
Earnings Var	0.76	2.00	0.54	0.83
Profit	-0.56	2.10	-0.61	0.72
000	000	000	000	000
Restaurants	0.02	9.90	-0.19	-0.04
Market	-0.02	12.18	0.32	-0.08
Leverage	-0.21	1.88	0.20	-0.08
Total	1.00	6.79	0.98	6.65

Specific Drilldown

	Active	Specific	Specific	Risk
Stock	Weight	Volatility	Correlation	Contrib
Apple	-0.029	16.53	-0.07	0.032
Exxon Mobil	-0.016	17.84	-0.04	0.012
Amazon	-0.014	18.48	-0.04	0.010
Johnson	-0.014	16.96	-0.03	0.008
Google	-0.021	13.53	-0.02	0.006
Facebook	-0.013	14.68	-0.03	0.005
000	000	000	000	000
Total	1.00	1.42	0.20	0.29

- Risk contributions are additive
- Drilldown provides further insight into drivers of portfolio risk

Portfolio & Risk Analytics Research

Further Applications

Brinson Risk Attribution

Decompose active return into allocation and selection decisions

$$R_A = \sum_i \left(w_i^P - w_i^B \right) \left(r_i^B - R_B \right) + \sum_i w_i^P \left(r_i^P - r_i^B \right)$$
 Attribution Equation

- Allocation effect only explains a small part of active risk
- Most of the risk is due to selection effect ("residual")

	Active	Relative	Relative	Allocation	Portfolio	Active	Active	Selection
Sector	Weight	Volatility	Correlation	Contrib	Weight	Volatility	Correlation	Contrib
Cash	0.02	12.24	-0.32	-0.08	0.02	0.00	0.00	0.00
Consumer Discretionary	0.02	5.62	0.18	0.02	0.15	6.09	0.63	0.57
Consumer Staples	-0.06	9.09	-0.46	0.23	0.03	8.58	0.76	0.21
Energy	-0.06	20.36	-0.05	0.06	0.01	19.49	0.48	0.12
Financials	-0.09	8.13	-0.10	0.07	0.05	7.09	0.74	0.25
Health Care	0.09	11.33	0.33	0.32	0.22	10.49	0.86	2.01
Industrials	0.05	5.54	0.02	0.01	0.15	6.11	0.81	0.76
Information Technology	0.04	5.34	0.14	0.03	0.25	8.14	0.88	1.78
Materials	0.01	8.49	0.13	0.02	0.05	7.12	0.53	0.18
Real Estate	0.01	12.01	-0.05	-0.01	0.05	4.02	0.45	0.10
Telecommunications	-0.02	12.14	-0.34	0.07	0.01	14.46	0.64	0.07
Utilities	-0.02	15.61	-0.34	0.13	0.01	7.85	0.55	0.03
Total	1.00	1.99	0.43	0.87	1.00	6.33	0.96	6.07

Sloomberg

Custom Factor Attribution

Attribute risk to custom factors defined by regression:

$$r = Yg + e$$

Y denotes custom factor exposure matrix g denotes custom factor returns (portfolios) e denotes residuals from custom factors

- Client provides custom factor exposure matrix
- Return attribution for custom factors

$$R_A = \sum_l Y_l^A g_l + \sum_n w_n^A e_n$$

Attribution Equation

- Volatilities and correlations computed using Bloomberg model
- Pure factor portfolios are based on custom factor exposures
- Residual returns may now be correlated

Example: Custom Factor Attribution

 Attribute risk to the following custom factors: 11 GICS sectors, market, size, volatility, value, and momentum

	Factor	Factor	Factor	Risk
Factor	Exposure	Volatility	Correlation	Contribution
Consumer Discretionary	0.02	5.55	0.09	0.01
Consumer Staples	-0.06	9.21	-0.44	0.22
Energy	-0.06	21.47	-0.05	0.05
Financials	-0.09	7.39	0.07	-0.04
Health Care	0.09	11.08	0.33	0.31
Industrials	0.05	5.27	-0.09	-0.02
Information Technology	0.04	5.28	0.19	0.04
Materials	0.01	8.29	-0.03	0.00
Real Estate	0.01	12.56	-0.31	-0.05
Telecommunications	-0.02	11.58	-0.06	0.01
Utilities	-0.02	16.06	-0.36	0.14
Market	-0.02	12.24	0.32	-0.08
Size	-1.98	3.15	-0.80	5.02
Volatility	0.24	2.05	0.43	0.21
Value	-0.59	2.73	-0.28	0.45
Momentum	0.54	2.72	-0.05	-0.07
Total				6.21

Factor Drilldown

Note: custom style factors are standardized with respect to RU-3000 universe

- Most of the risk is attributable to the size factor
- Custom factors explain 6.21%, versus 6.65% for full factor set

Residual Drilldown

 Since custom factors don't capture all sources of return covariance, residual returns are now correlated

	Active	Residual	Residual	Risk
Stock	Weight	Volatility	Correlation	Contribution
Exxon Mobil	-0.016	14.23	-0.15	0.035
Apple	-0.029	14.16	-0.08	0.031
Tesaro	0.003	47.53	0.18	0.029
Horizon Pharma	0.003	44.72	0.19	0.028
Berkshire Hathaway	-0.012	10.93	-0.15	0.021
000	000	000	000	000
Total				0.73

Residual Drilldown

- Residual returns now account for 73 bps of risk, versus 29 bps when using the full factor set
- Total active risk is 6.21 + 0.73 = 6.94%
- Active risk is fully explained, but now is attributed to factors that reflect the client's investment process

Reverse Optimization

Component IR

Information ratio

$$IR = \frac{E[R_A]}{\sigma_R} = \sum_{m} \left(\frac{x_m E[g_m]}{\sigma_R} \right) = \sum_{m} \left(\frac{x_m \sigma_m \rho_m}{\sigma_R} \right) \left(\frac{x_m E[g_m]}{x_m \sigma_m \rho_m} \right)$$

Risk weight

- Risk weights add to 100% (risk budget)
- Component IR represents the expected return contribution divided by the risk contribution
 - For an optimal portfolio, component IR of all sources must be equal
 - Each source of risk must "pull its weight" in expected returns
- Implied returns (assuming portfolio is optimal)

$$E[g_m] = IR \cdot (\sigma_m \rho_m)$$
 Implied returns (reverse optimization)

 Forms the basis for an interesting discussion between the risk manager and the portfolio manager

Benchmark Financing

- Portfolio: World Growth with 5% cash; Benchmark: World Value
- Attribution equation for "benchmark financing" Note: $\beta_P = 0.82$

$$R_{A} = \sum_{n} w_{n}^{A} (r_{n} - R_{B}) \rightarrow \sigma(R_{A}) = \sum_{n} w_{n}^{A} \sigma(r_{n} - R_{B}) \rho(r_{n} - R_{B}, R_{A})$$

October 2009	Portfolio	Benchmark	Active	Relative	Dalativa	Relative	Active risk	
Asset name	weight (%)	weight (%)	weight (%)	volatility (%)	Relative correlation	MCAR (%)	contribution (%)	
US dollar	5.00	0.00	5.00	30.74	0.83	25.48	1.27	
Bank of America	0.00	1.38	-1.38	59.24	-0.41	-24.16	0.33	
Citigroup	0.00	0.73	-0.73	80.49	-0.42	-33.85	0.25	
Nestlé	1.44	0.00	1.44	26.64	0.51	13.52	0.19	
Microsoft	1.93	0.00	1.93	27.16	0.35	9.51	0.18	
:	:	:	:	:	:	:	:	
Pfizer	0.00	1.05	-1.05	26.13	0.32	8.31	-0.09	
Toyota	0.00	1.04	-1.04	29.19	0.30	8.76	-0.09	
BP	0.00	1.56	-1.56	25.16	0.23	5.85	-0.09	
AT&T	0.00	1.50	-1.50	25.28	0.27	6.72	-0.10	
Exxon Mobil	0.00	3.15	-3.15	24.34	0.27	6.69	-0.21	
Total							6.73	

Davis, Ben., and Jose Menchero. 2012/2013. "The Importance of Attributing Active Risk to Benchmark-Relative Sources." *Journal of Risk*, vol. 15, no. 2 (Winter): 59-76.

Cash Financing

Attribution equation for "cash financing"

$$R_{A} = \sum_{n} w_{n}^{A} r_{n} \rightarrow \left[\sigma(R_{A}) = \sum_{n} w_{n}^{A} \sigma(r_{n}) \rho(r_{n}, R_{A}) \right]$$

Note: $\beta_P = 0.82$

- Cash appears to be the riskless asset (not realistic)
- Every stock has a negative MCAR (not intuitive)

October 2009	Portfolio weight	Benchmark weight	Active weight	Absolute volatility	Absolute	Absolute MCAR	Active risk contribution
Asset name	(%)	(%)	(%)	(%)	correlation	(%)	(%)
Bank of America	0.00	1.38	-1.38	76.10	-0.65	-49.64	0.68
Exxon Mobil	0.00	3.15	-3.15	31.98	-0.59	-18.79	0.59
General Electric	0.00	1.64	-1.64	51.47	-0.68	-35.08	0.57
JP Morgan	0.00	1.55	-1.55	54.08	-0.65	-35.15	0.55
HSBC	0.00	1.87	-1.87	42.17	-0.67	-28.40	0.53
:	÷	÷	÷	÷	÷	÷	:
CISCO	1.26	0.00	1.26	36.00	-0.55	-19.67	-0.25
IBM	1.47	0.00	1.47	33.78	-0.51	-17.16	-0.25
Apple	1.54	0.00	1.54	37.67	-0.46	-17.26	-0.27
BHP Billiton	1.04	0.00	1.04	55.84	-0.47	-26.35	-0.27
Microsoft	1.93	0.00	1.93	34.87	-0.46	-15.97	-0.31
Total							6.73

Flexible Partitions

Grouping factors by partitions provides a flexible view of risk:

$$R_A = \sum_{P} \left(\sum_{k \in P} X_k^A f_k \right) + \sum_{n} w_n^A u_n$$
 Attribution Equation

Examples:

- Fixed Income
 - Group into Treasuries, Corporates, Agency, etc.
 - Divide Treasury bucket into distinct tenor points
- Equities
 - Group factors into Market, Regions, Sectors, and Styles
 - Divide Styles into momentum buckets, size buckets, etc.
- Multiple Asset Classes
 - Group factors into equities, commodities, fixed income
 - Drill into each asset class

Flexible Partitions (Example)

Alpha/Beta Risk Attribution

 Quantitative equity managers often decompose stock returns into excess (alpha) and passive (beta) components

$$r_n = \alpha_n + \beta_n R_R + e_n$$
 Alpha/Beta Decomposition

- Beta component can be cheaply replicated with index funds
- Alpha component represents the value added from active management (expensive)

$$R_A = \beta_A R_B + \sum_n w_n^A (\alpha_n + e_n)$$

Return Attribution

Attribute risk to alpha/beta components using x-sigma-rho

Summary

- Performance attribution identifies the drivers of portfolio return and should reflect the investment process
- Risk should always be attributed to the same decision variables used to attribute performance
- The *x-sigma-rho* framework identifies the three drivers of risk:
 - Portfolio exposures
 - Stand-alone volatility of return sources
 - Correlations between return sources and active portfolio
- The x-sigma-rho framework is exactly consistent with MCAR but is far more intuitive
- Framework can systematically applied to any performance attribution method