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Motivation

Beyond the routine measurement and reporting of investment returns, it is essential that financial organizations 
analyze performance outcomes to understand their economic implications and statistical significance.

Most metrics of investment performance (e.g. Sharpe Ratio) silently embed the same assumptions that are present 
in established financial theories (e.g. MPT, CAPM).

In using such metrics in their usual form, we are assuming that returns are normally distributed, random (or almost 
so), and that transaction costs are so small as to be inconsequential.

Many pension funds use unrealistically high return assumptions for actuarial calculations.  Relative to these 
expectations realized returns will have higher moments.  
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Presentation Outline

IN THIS PRESENTATION, WE FIRST 
PROVIDE ILLUSTRATIONS OF THE 
CRITICAL LIMITATIONS OF OUR 

PERFORMANCE METRICS WHEN THESE 
ASSUMPTIONS FAIL.

SECONDLY, WE PROVIDE SOME BASIC 
METHODS TO TEST WHETHER SUCH 
ASSUMPTIONS ARE JUSTIFIED FOR A 

PARTICULAR SET OF RETURN 
OBSERVATIONS, OR WHETHER 

ADJUSTMENTS IN ANALYTICAL METHODS 
ARE REQUIRED.

FINALLY, WE WILL PRESENT SOME 
ALGEBRAIC ADJUSTMENTS TO 

TRADITIONAL INVESTMENT 
PERFORMANCE METRICS THAT WILL 

ALLOW THEIR VALUES TO BE 
INTERPRETED CORRECTLY. 

WE WILL ALSO DEMONSTRATE HOW THE 
VOLATILITY EQUIVALENT APPROACH CAN 

BE USED IN AN EX-ANTE FASHION TO 
SENSIBLY EVALUATE RETURN 

DISTRIBUTIONS WHERE A LARGE EVENT 
MAY BE EXPECTED TO SOMETIME OCCUR 

IN THE FUTURE, EVEN WHEN NO SUCH 
LARGE RETURN EVENT IS CONTAINED 

WITHIN THE DATA SAMPLE BEING 
ANALYZED.
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The assumption of normality comes from Central Limit Theorem of 
statistics. We know that when we add a sum up a large 
number of independent observations (e.g. returns), the 
distribution of the sum will be normally distributed 
irrespective of distributions of the individual observations.

We also know that if transaction costs aren’t zero portfolios 
returns over different periods aren’t completely independent, 
so you need a larger number of observations to get close to 
normality.

If we tested these assumptions as formal hypotheses, we would 
find that in many cases we would reject these notions as 
untrue, and therefore cannot no longer rely on the validity of 
the performance metrics.

In his book Iceberg Risk, finance researcher Kent Osband aptly 
named one of the chapters “The Abnormality of Normality”. 

Abuse of the CLT
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A Scary, But Real Example

Consider investment returns that outperformed the risk-free asset by 
8% per year with a standard deviation of 10% per year. The realized 
Sharpe Ratio (see Sharpe, 1966) is .8 (8/10). The expectation of the 
geometric mean excess return is 7.5% per annum (see Messmore, 
1995).

Now let’s consider what happens when we add a rare, but large 
negative event. Let’s assume that with a 2% annual likelihood (1 year 
in 50), our investment result will be a loss 90% below the risk-free 
return. The distribution of returns will now be expected to have 
negative skew and positive excess kurtosis.

The expected arithmetic mean return (numerator) is 6.04% and the 
volatility equivalent is 33% for a Sharpe ratio of .18, less than a 
quarter of the earlier value. The expectation of the geometric mean 
active return is just 60 basis points (.6%) per year, less than a tenth of 
previous value.
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Volatility Equivalence

In the above example, we redefined the 
denominator of the Sharpe Ratio as a 
“volatility equivalent” in presence of skew 
and kurtosis.

We  assert that the single concept of 
defining a volatility equivalent will suffice to 
correct other performance metrics such as 
“Information Ratio” (Rudd and Clasing, 
1982) and “mean/variance risk-adjusted 
return” (Levy and Markowitz, 1979).

Our definition of volatility equivalence will 
also address other assumptions that often 
fail in the real world such that transaction 
costs are so low that we can consider 
different return periods as independent 
observations. 

In addition, the volatility equivalent method 
also allows for traditional measures of 
statistical significance (e.g. T statistics and P 
values) to be utilized in the context of 
evaluating agent manager skill.
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Some Selected Literature

To deal with “risk adjusted return” 
you need to understand investor 
risk aversion:  Litzenberger and 
Rubinstein (1976), Wilcox (2000, 
2003), diBartolomeo (2021)

1

To consider the statistical 
significance of Sharpe and 
Information Ratios we have Jobson 
and Korkie (1981), Lo (2002), 
Memmel (2003), Ledoit and Wolf 
(2008), Bertrand and Protopescu 
(2010). 

2

To adjust observed returns when 
assets are illiquid, we highlight 
Geltner (1991) and Lo, Getmansky
and Makarov (2008). 

• General issues of calculating standard 
deviation in the presence of serial 
correlation go back to Bloch (1968) and 
Brugger (1969).  

3
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The basics of economic interpretation of investment return 
distributions with skew and kurtosis is provided in 
Satchell and Hall (2013).

The impact of “rare but large” return events on the 
empirical evaluation of common equity investment 
strategies (e.g. “value”, “momentum”) is explored in 
diBartolomeo and Kantos (2020).

diBartolomeo (2007) provides a theoretical link between 
“price sensitive” investment strategies and option 
replicating strategies such as “constant proportion 
portfolio insurance” as proposed by Perold (1986).

Negative skew in returns for hedge funds arising from 
being “short volatility” has been well documented in 
papers such as Weisman (2002),  Bondarenko (2004), 
and Fung and Hsieh (2004). 

More Literature
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Ingredients to Today’s Process

There are many tests for non-normality in the statistics 
literature which are summarized in Thode (2002).

For illustration we will use the 
popular JB statistic as proposed by 

Jarque and Bera (1980).

Our method for converting to the 
volatility equivalent from a four-

moment distribution was first 
proposed by Cornish and Fisher 

(1938).

Several papers have proposed 
algebraic refinements of the 

Cornish Fisher method including 
Chernozuckov, Fernandez-Val, and 
Galichon (2010), and Martin and 

Arora (2017).

A method for explicitly forecasting skew and kurtosis in 
a return distribution conditional on the probability of a 
“large event” is provided in Blackburn, diBartolomeo, 

and Zieff (2022) which relies on the “mixture of normal 
distribution” process first proposed by Robertson and 

Fryer (1969).
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Testing for Imperfect Liquidity

Imperfect liquidity typically manifests as positive 
serial correlation in returns. 

We will first consider the simple case of whether a 
particular return series of returns exhibits serial 
correlation. The relationship between the return in 
the prior period and return in the current period is 
expressed in a simple univariate equation.

As the indication of statistical significance, 
practitioners typically treat a T statistic with 
absolute value between 1.5 and 3 as sufficient to 
justify concluding significance. If the serial 
correlation property of the series is significantly 
different from zero, we apply the relevant 
adjustment to the volatility of the returns, st.

The most widely used adjustment is presented. This 
formulation makes it easy to calculate with standard 
spreadsheet statistical functions. 
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Adjusting for Serial Correlation

Rt = a + rt,t-1 (st/ st-1) Rt-1 + et

T = rt,t-1 (n-2).5 / (1-rt,t-1
2

)

Vt = ((1 + rt,t-1)/(1- rt,t-1)).5 st

n = number of data points
Rt is the return observed in period t
et is the error term of the relationship in period t
rt,t-1 is the correlation between the return series elements and the returns of the 
prior period
st is the standard deviation of the returns in the sample period
Vt = the volatility equivalent for the returns in the sample period
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Our next task is to test for and where necessary define volatility 
equivalence for a set of past returns.

We will first test using the Jarque-Bera (JB) statistic as it is easily 
done in a spreadsheet, but many other statistical tests for 
normality exist.

If the value of JB is found to be statistically significant, we can 
reject the hypothesis that the distribution is normal, and 
thereby justify the need for the computation of volatility 
equivalence.

• For samples with large numbers of data points, the 
probability value of the JB statistic being indicating 
significance can be computed as a Chi-Square distribution 
with two degrees of freedom (i.e. a statistical function in 
most spreadsheets).

• For smaller samples, a table from Wikipedia estimated 
via Monte Carlo simulation has been provided.

Testing for Non-Normality with the JB Statistic
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JB = (n/6) (S2 + .25 (K-3)2)

S = the sample skew of the returns
K = the sample kurtosis of the returns (note many 
spreadsheets report “excess kurtosis” with the value 3 
already subtracted)

The Jarque Bera Statistic
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Once we have concluded that the a given sample of returns 
is not normally distributed, we can use the Cornish 
Fisher (CF) expansion method to compute volatility 
equivalence.

We will first choose which percentile P of the return 
distribution that we will use as the critical value from 
which to infer volatility equivalence. Given that we are 
interested in estimating volatility as a metric of risk we 
are interested in the left tail of the return distribution.

Much as we would for choosing a critical value for 
statistical significance, percentile choices of 1 to 5% are 
sensible with 5% being the most 
common. Practitioners should note that the choice of 
P will slightly influence the value of the volatility 
equivalent. When comparing multiple funds or time 
periods the same value of P should be used.

Converting Four Moments to Two



www.northinfo.com Slide 15

Recognizing Fat Tails 
Given the four moments of the distribution (mean, standard 
deviation, skew, and kurtosis) we can compute the return value that 
corresponds to the chosen value of P.

To compute the tail weight parameter, Wp we begin with the value Z 
that corresponds to the P percentile of the normal distribution (e.g. Z 
for P = 5% is -1.645). The computation of Wp involves a class of math 
functions known as Hermite polynomials but the approximation is 
sufficient for most cases.

Let’s compute the example of a distribution with mean 8%, standard 
deviation 10%, sample skew -4, and sample kurtosis 5 (excess kurtosis 
= 2), using the 5th percentile as the critical value (Z =-1.645). In this 
case, Wp = -2.44 and our “volatility equivalent” (Vt) = 14.83 as 
compared to the original standard deviation of 10.
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Cornish Fisher Computation

Vt = st Wp / Zp

Wp= Zp + (S/6) * (Zp
2-1) + Zp * ((K-3)/24) * (Zp

2 – 3)- Zp*(S2/36) * (2Zp
2 -5)

Wp = the Cornish Fisher “tail weight” parameter



www.northinfo.com Slide 17

Financial market returns can be severely impacted by rare, 
“large” events such as wars, pandemics, and market 
crashes.

Similarly, individual investments are sometimes subject to 
rare, generally negative extreme “tail” events such as 
the credit default of a bond, or the collapse of a 
levered hedge fund due to margin calls.

Each of these kinds of event are infrequent so it is likely 
that in most series of observed returns the “big, bad, 
event” hasn’t happened yet.

In many cases the value of an asset or portfolio could go to 
zero, so the impact of these events cannot be observed 
in the past because they would constitute the end of 
the existence of the asset (e.g. SVB) 

How about the Dog that Didn’t Bark or Bite (yet)?
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Forward Looking Tail Probabilities

Even for unlevered portfolios such as passive index funds there is always some non-zero probability 
of a severe market decline due to the onset of a war, pandemic, or financial crisis.

From any of many studies investors could frame expectations about the future probability of a 
“hedge fund blow- up” and the range of loss severity when such funds suffer difficulties.

We can certainly estimate what a sensible volatility equivalent might be given a historical standard 
deviation of returns, and some assumptions of about large, negative events could happen but have 

not happened yet.

A hedge fund investor might look at hedge fund return 
databases and observe that each year 3% of the hedge funds 

that were in the data in the prior year dropped out of the 
database.

There is an extensive literature on survivorship bias in hedge 
fund returns such as Liang (2000), Lo (2001), and Posthuma 

and Van der Sluis (2003).
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For any kind of “large event” we will introduce the forward-looking 
annual probability M and the conditional distribution of loss L 
which has its own degree of uncertainty as to the severity.

• If we assume the probability of the negative event is M per 
year, then probability that conditions will remain stable, and 
the event will not occur is (1-M).

We now have two mutually exclusive states of the future, one in which 
conditions remain as they have been historically (the bad event 
has happened yet), and one where the large, negative event takes 
place. Each of these two states can be represented as a normal 
distribution with some expectation of the mean uI and standard 
deviation si.

• From a small amount of algebra, we obtain the four moments 
of the ex-ante distribution. We can simply repeat the 
Cornish-Fisher exercise presented above to calculate a 
volatility equivalent inclusive of the potential for a “large 
event” that has not yet taken place, conditional on the 
probability and likely range of severity of such an event. 

Mixture Distributions
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Robertson and Fryer (1969)

• To estimate the “volatility equivalent” appropriate to this situation, we will first combine the two 
distributions.

𝜇 = 𝛴𝑖=1
2 𝑚𝑖𝜇𝑖

𝜎2 = 𝛴𝑖=1
2 [𝑚𝑖 𝜎𝑖

2 + 𝜇𝑖
2 − 𝜇𝑖

2 ]

𝑆 =
1

𝜎3
{𝛴𝑖=1

2 𝑚𝑖 (𝜇𝑖 − 𝜇)[3𝜎𝑖
2 + 𝜇𝑖 − 𝜇 2]}

𝐾 =
1

𝜎4
{𝛴𝑖=1

2 𝑚𝑖 [3𝜎𝑖
4 + 6 𝜇𝑖 − 𝜇 2𝜎𝑖

2 + 𝜇𝑖 − 𝜇 4]}

where

mi = the probability of state i , μ = mean return of the combined distribution

s = standard deviation of the combined distribution

μi = the expected return in state i , si = the expected volatility in state i

S = skew of the combined distribution, K = kurtosis of the combined distribution (raw)
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Conclusions

• The typical process of analyzing investment performance has always been rooted in capital market 
theories that make false assumptions about normality and randomness.

• Our usual metrics such as Sharpe Ratio, Information Ratio,  and “risk adjusted returns” are not valid 
unless the underlying assumptions cannot be rejected as false.

• If the underlying assumptions do not hold, whether from non-normality or autocorrelation, we must 
modify our analytical framework to accommodate the practical realities rather than make decisions 
on distorted information. 

• In this presentation, we have provided both statistical tests and tractable algebraic adjustments to 
allow investment performance to be fairly evaluated when the distribution of returns is serially 
correlated, non-normal, or is expected to be non-normal.  
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