


## TIME- vs. MONEY-WEIGHTED PERFORMANCE

## TIME- vs. MONEY-WEIGHTED PERFORMANCE

- Time-weighting eliminates or reduces the effect of cash flows, while
- Money-weighting takes cash flows into consideration


## TIME- vs. MONEY-WEIGHTED PERFORMANCE

- Time-weighting is ideal to evaluate managers who do not control cash flows, while
- Money-weighting is ideal to evaluate:
- A client's own or personal return
- Managers who control cash flows (e.g., private equity)
- Sub-portfolio returns


## G/er2t

## WHAT TIME-WEIGHTING ACTUALLY MEANS

## WHAT TIME-WEIGHTING ACTUALLY MEANS

- The term was coined by the Bank Administration Institute in their 1968 report, Measuring the Investment Performance of Pension Funds
- From the BAI standards:
- "The recommended rate is called 'time-weighted' because it is simply the weighted average of internal rates of return for the subperiods between cash flows with each weight being only the length of its corresponding subperiod."
- While this may make intuitive sense, NO ONE DOES THIS! Instead, we use geometric linking



## TIME-WEIGHTING HAS COME TO MEAN

## Returns that eliminate or reduce the impact of cash flows

## G/er2t

## ARITHMEIC vs. GEOMETRIC ATTRIBUTION

## ARITHMEIC vs. GEOMEIRIC ATTRIBUTION

- It has to do with excess return
- Recall that with attribution, we are trying to reconcile to the excess return


## ARITHMEIIC vs. GEOMEIRIC ATTRIBUTION

- In the case of arithmetic attribution, we are reconciling to an arithmetic view of excess return.
- i.e.,

$$
\sum^{n} A E_{i}=R_{P}-R_{B}
$$

## ARITHMEIIC vs. GEOMEIRIC ATTRIBUTION

- In the case of geometric attribution, we are reconciling to a geometric view of excess return.
- i.e.,

$$
\sum_{i=1}^{n} A E_{i}=\frac{1+R_{P}}{1+R_{B}}-1
$$

## AN EXAMPLE

Arithmetic:

$$
R_{P}-R_{B}=7 \%-5 \%=2 \%
$$

Geometric:

$$
\frac{1+R_{P}}{1+R_{B}}-1=\frac{1+7 \%}{1+5 \%}-1=\frac{1.07}{1.05}-1=1.9 \%
$$

## ARITHMEIC vs. GEOMEIRIC ATTRIBUTION

- Geometric is quite common in the UK, where there seems to be a preference for excess returns to be expressed in a geometric fashion
- The rest of the world prefers arithmetic


## G/er2t

## SHARPE vs. TREYNOR RATIOS

## SHARPE vs. TREYNOR RATIOS

Despite being less popular, Treynor came first

- Treynor, Jack L.. 1965. "How to Rate Management of Investment Funds." Harvard Business Review. 43, 6375.
- Sharpe, William F. 1966. "Mutual Fund Performance." Journal of Business. 39, 119.

Editorial comment: Unlikely these publications would be used today for such articles

## SHARPE vs. TREYNOR RATIOS

Both produce what is commonly* referred to as "riskadjusted returns."

* Though inaccurately, since neither adjust returns for risk. Rather, they are ratios that provide the units of return per unit of risk taken


## SHARPE vs. TREYNOR RATIOS

Each uses equity risk premium in the numerator, with a risk measure in the denominator

$$
\begin{aligned}
& \text { TreynorRatio }=\frac{\overline{r_{p}}-\overline{r_{f}}}{\beta_{p}} \\
& \text { SharpeRatio }=\frac{\overline{r_{p}}-\overline{r_{f}}}{\sigma_{p}}
\end{aligned}
$$

## G/er2t



## CONTRARY TO WHAT CIPM® SAID

- $\mathrm{M}^{2}$ is NOT tied to Sharpe ratio
- Modigliani's were risk-agnostic
- Can use just about any risk measure (e.g., beta)



## G/er2t

## BRINSON, HOOD, BEEBOWER vs. BRINSON-FACHLER

## BRINSON, HOOD, BEEBOWER vs. BRINSON-FACHLER

Brinson, Hood, Beebower's attribution model was introduced in the FAJ:
Brinson, Gary P., L. Randolph Hood, and Gilbert L. Beebower. 1986. "Determinants of Portfolio Performance." Financial Analysts Journa!' August.

## BRINSON, HOOD, BEEBOWER vs. BRINSON-FACHLER

Brinson, Fachler actually preceded BHB, and appeared in The Journal of Portfolio Management.
Brinson, Gary P. and Nimrod Fachler. "Measuring Non-U.S. Equity Portfolio Performance." Journal of Portfolio Management. Spring 1985.

## BRINSON, HOOD, BEEBOWER vs. BRINSON-FACHLER

- Both articles mainly had to do with demonstrating how allocation is an important [and often primary] contributor to returns
- A bi-product was the introduction of two ways to calculate attribution, primarily for equities, though it has other applications


#  

## IT HAS TO DO WITH ALLOCATION

The only difference between the models is allocation
Allocation $_{B H B}=r_{B_{i}} \times\left(w_{P_{i}}-w_{B_{i}}\right)$
Allocation $_{B F}=\left(r_{B_{i}}-R_{B}\right) \times\left(w_{P_{i}}-w_{B_{i}}\right)$

## A WAY TO VISUALIZE THE DIFFERENCE

## A WAY TO VISUALIZE THE DIFFERENCE



#  

## G/er2t

## HOW TO EVALUATE REIURNS

## THAT DONT MAKE SENSE

## HOW TO EVALUATE REIURNS THAT DONT MAKE SENSE

- If you've been in performance measurement long enough, you've encountered returns that don't make sense.
- E.g., POSITIVE return and the portfolio LOST MONEY


## WHERE DO WE BEGIN?

- I suggest you start with cash flows
- We typically see them, and they're often large, when returns do not make sense


## JUST BECAUSE THEY DONT MAKE SENSE ...

- Doesn't mean they're wrong
- When there are sizable moves in the market, following large flows, the resulting returns might not appear to be right, but they actually might be
- The challenge is explaining why they do


Have any questions?


TSG


## We Are Performance" ${ }^{\text {" }}$

The institutionally recognized boutique performance measurement consulting and GIPS ${ }^{\ominus}$ standards specialist firm serving the investment industry

www.TSGperformance.com

